
Chapter 15: Draw and Impress Documents 375

Chapter 15
 Draw and Impress Documents

This chapter introduces methods to manipulate and modify the content contained in Draw and Impress
documents. The drawing functionality is the same in Draw and Impress, but Impress contains extra
functionality to facilitate presentations.

Draw and Impress are vector-oriented graphical applications. They can also display bitmap images, but their strength is
not in photo editing. Vector-oriented applications represent many graphical objects as objects rather than as bitmapped
images. For example, lines, circles, rectangles, and text are each represented as special objects. One advantage of vector
graphics is that you can independently manipulate and transform multiple overlapping elements without worrying about
resolution and pixels.

Photo-editing graphics packages typically represent and manipulate images as bitmaps. A bitmap representing an
image is characterized by the width and height of the image in pixels. Each pixel represents a single, colored dot in the
image. The drawing capability in OpenOffice.org, however, is focused on vector operations.

Every Draw document supports the com.sun.star.drawing.DrawingDocument service and every Impress document
supports the com.sun.star.presentation.PresentationDocument service. When I write a macro that must be user friendly
and requires a specific document type, I verify that the document is the correct type by using the object method
supportsService(). See Listing 1.

Listing 1. Check for an Impress document before checking for a Draw document.

REM If it really matters, you should check the document type
REM to avoid a run-time error.
sDraw$ = "com.sun.star.drawing.DrawingDocument"
sImpress$ = "com.sun.star.presentation.PresentationDocument"
If ThisComponent.SupportsService(sImpress$) Then
 MsgBox "The current document is an Impress document", 0, "Impress Document"
ElseIf ThisComponent.SupportsService(sDraw$) Then
 MsgBox "The current document is a Draw document", 0, "Draw Document"
Else
 MsgBox "The current document is not the correct type", 48, "Error"
 Exit Sub
End If

The PresentationDocument service implements the DrawingDocument service. This means
that every presentation document looks like a drawing document. To distinguish between the
two document types, you must first check for a presentation (Impress) document and then
check for a drawing document.

Draw pages
The primary function of Draw and Impress documents is to contain graphical data, which is stored in draw pages. The
primary draw-page functionality is implemented by a GenericDrawPage. There are two types of draw pages—the
MasterPage and the DrawPage. Both draw-page types implement the GenericDrawPage and are therefore able to hold
and manipulate the same content.

A master page acts as a common background for zero or more draw pages. Each draw page may link to one master
page. Each master page is constrained as follows:

 A master page, unlike a regular draw page, may not link to a master page.

 A master page may not be removed from a document if any draw page links to it.

 Modifications made to a master page are immediately visible on every draw page that uses that master page.

The method getMasterPages() returns the document’s collection of master pages. The method getDrawPages()
returns the document’s collection of draw pages. Both methods return the same object type; they differ only in how their
contents are used (see Table 1).

376 OpenOffice.org Macros Explained

Table 1. Methods supported by the com.sun.star.drawing.XDrawPages interface.

Method Description

insertNewByIndex(Long) Create and insert a new draw page at the specified index.

hasByName(String) Return True if the named page exists.

hasElements() Return True if any draw pages exist.

remove(DrawPage) Remove a specific draw page.

getCount() Return the number of contained objects as a Long Integer.

getByIndex(Long) Get the specified draw page.

getByName(String) Get the specified draw page.

duplicate(DrawPage) Duplicate the DrawPage and return the new DrawPage.

hasElements() Return True if there are draw pages to return.

Each draw page has a name, which you can access by using the methods getName() and setName(). A draw page
that is not a master supports the methods getMasterPage() and setMasterPage() to get and set the master page. Listing 2
demonstrates enumerating the document’s draw pages and their corresponding master pages.

Listing 2. getPages is found in the Graphic module in this chapter’s source code files as SC15.sxi.

Sub getPages()
 Dim s$
 s = s & getPagesInfo(ThisComponent.getDrawPages(), "Draw Pages")
 s = s & CHR$(10)
 s = s & getPagesInfo(ThisComponent.getMasterPages(), "Master Pages")
 MsgBox s, 0, "Pages"
End Sub

Function getPagesInfo(oDPages, sType$) As String
 Dim i%, s$
 Dim oDPage, oMPage
 s = s & "*** There are " & oDPages.getCount() & " " & sType & CHR$(10)
 For i = 0 To oDPages.getCount()-1
 oDPage = oDPages.getByIndex(i)
 s = s & "Page " & i & " = '" & oDPage.getName() & "'"
 If NOT oDPage.supportsService("com.sun.star.drawing.MasterPage") Then
 oMPage = oDPage.getMasterPage()
 s = s & " master = "
 If NOT IsNull(oMPage) AND NOT IsEmpty(oMPage) Then
 s = s & "'" & oMPage.getName() & "'"
 End If
 End If
 s = s & CHR$(10)
 Next
 getPagesInfo = s
End Function

Although you can get a draw page based on its name, you can have more than one draw page with the same name.
If multiple draw pages use the same name and you retrieve the draw page based on the name, it is not specified which
draw page is returned. The macro in Listing 3, which searches for a draw page with a specific name, is used in
numerous places in this chapter.

Listing 3. createDrawPage is found in the Graphic module in this chapter’s source code files as SC15.sxi.

Function createDrawPage(oDoc, sName$, bForceNew As boolean) As Variant
 Dim oPages 'All of the draw pages
 Dim oPage 'A single draw page
 Dim i% 'General index variable
 oPages = oDoc.getDrawPages()
 If oPages.hasByName(sName) Then
 REM If we require a new page then delete
 REM the page and get out of the for loop.
 If bForceNew Then
 oPages.remove(oPages.getByName(sName))

Chapter 15: Draw and Impress Documents 377

 Else
 REM Did not request a new page so return the found page
 REM and then get out of the function.
 createDrawPage = oPages.getByName(sName)
 Exit Function
 End If
 End If

 REM Did not find the page, or found the page and removed it.
 REM Create a new page, set the name, and return the page.
 oPages.insertNewByIndex(oPages.getCount())
 oPage = oPages.getByIndex(oPages.getCount()-1)
 oPage.setName(sName)
 createDrawPage = oPage
End Function

Generic draw page
Both regular and master draw pages support the GenericDrawPage service. As its name implies, the GenericDrawPage
service provides the primary generic drawing functionality. Writer and Calc documents provide specific styles for
formatting entire pages. Draw pages, however, use the properties shown in Table 2.

Table 2. Properties defined by the com.sun.star.drawing.GenericDrawPage service.

Property Description

BorderBottom Bottom border in 1/100 mm, represented as a Long Integer.

BorderLeft Left border in 1/100 mm, represented as a Long Integer.

BorderRight Right border in 1/100 mm, represented as a Long Integer.

BorderTop Top border in 1/100 mm, represented as a Long Integer.

Height Height in 1/100 mm, represented as a Long Integer.

Width Width in 1/100 mm, represented as a Long Integer.

Number Draw page number as a Short Integer. This read-only value labels the first page 1.

Orientation Page orientation as a com.sun.star.view.PaperOrientation enumeration. Two values are
supported—PORTRAIT and LANDSCAPE.

UserDefinedAttributes User-defined XML attributes.

IsBackgroundDark True if the averaged background fill color’s luminance is below a specified threshold value.

The primary purpose of a draw page is to contain shapes. The methods addShape(Shape) and removeShape(Shape)
add and remove a shape from a document. Before a shape can be added to a draw page, it must be created by the
document. Each line produced by Listing 4 and shown in Figure 1 is a separate, unrelated shape. You can indepently
manipulate each of these shapes.

Listing 4. drawFirstGraphic is found in the Graphic module in this chapter’s source code files as SC15.sxi.

Sub drawFirstGraphic()
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oPoint 'Initial start point of the line
 Dim oSize 'Width and height of the line
 Dim i% 'Index variable
 Dim n% 'Number of iterations to perform
 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 n = 20

378 OpenOffice.org Macros Explained

 For i = 0 To n
 oShape = ThisComponent.createInstance("com.sun.star.drawing.LineShape")
 oShape.LineColor = RGB(255, 0, i+20)
 oShape.LineWidth = 20
 oPoint = oShape.Position
 oPoint.X = oPage.Width / 4
 oPoint.Y = i * oPage.Height / n / 4
 oShape.Position = oPoint
 oSize = oShape.Size
 oSize.Height = (oPage.Height - 2 * i * oPage.Height / n) / 4
 oSize.Width = oPage.Width / 2
 oShape.Size = oSize
 oPage.add(oShape)
 Next
End Sub

Figure 1. Twenty lines in an Impress document.

Combining shapes
The macro in Listing 4 creates 20 independent lines. You can group shapes together and then manipulate them as a
single shape. The method group(XShapes) accepts a collection of shapes and turns them into a single group; an
XShapeObject is returned. The macro in Listing 5 starts by calling Listing 4 and then it adds all of the lines to a single
group.

Listing 5. groupShapes is found in the Graphic module in this chapter’s source code files as SC15.sxi.

Sub groupShapes
 Dim oPage 'Page on which to draw
 Dim oShapes 'Shapes to group
 Dim i% 'Index variable

 REM Create the shapes!
 drawFirstGraphic()
 oPage = ThisComponent.getDrawPages().getByName("Test Draw")

 REM Create a shape collection object to group the shapes
 oShapes = createUnoService("com.sun.star.drawing.ShapeCollection")
 For i = 0 To oPage.getCount()-1
 oShapes.add(oPage.getByIndex(i))
 Next
 oPage.group(oShapes)
End Sub

When several shapes are grouped together using the group() method, the entire group is added as a single shape into
the draw page, which you can retrieve by using oPage.getByIndex(). It’s no longer possible to select a single line and
independently manipulate it. To convert a group of shapes back to independent shapes, use the ungroup(XShapeObject)
method. The ungroup() method removes the objects from the group and adds them back to the draw page as individual
objects (see Listing 6).

Listing 6. unGroupShapes is found in the Graphic module in this chapter’s source code files as SC15.sxi.

Sub unGroupShapes
 Dim oPage 'Page on which to draw
 Dim oShape 'Single shape
 Dim i% 'Index variable
 oPage = ThisComponent.getDrawPages().getByName("Test Draw")

Chapter 15: Draw and Impress Documents 379

 For i = 0 To oPage.getCount()-1
 oShape = oPage.getByIndex(i)
 If oShape.supportsService("com.sun.star.drawing.GroupShape") Then
 oPage.ungroup(oShape)
 End If
 Next
End Sub

Although shapes that are grouped together are manipulated as one shape, they are really a collection of shapes. The
combine(XShapes) method, on the other hand, converts each shape into a PolyPolygonBezierShape and then combines
them into one PolyPolygonBezierShape. See Listing 7. The new shape is added to the draw page, and the original
shapes are removed and deleted. The split(XShape) method converts the shape to a PolyPolygonBezierShape (if it is not
already) and then the shape is split into several shapes of type PolyPolygonBezierShape. The new shapes are added to
the draw page and the original shape is removed and deleted.

Listing 7. combineShapes is found in the Graphic module in this chapter’s source code files as SC15.sxi.

Sub combineShapes
 Dim oPage, oShapes, i%

 REM Create the shapes!
 drawFirstGraphic()
 oPage = ThisComponent.getDrawPages().getByName("Test Draw")

 oShapes = createUnoService("com.sun.star.drawing.ShapeCollection")
 For i = 0 To oPage.getCount()-1
 oShapes.add(oPage.getByIndex(i))
 Next
 oPage.combine(oShapes)
End Sub

The bind(XShapes) method is similar to combine() except that the individual shapes are connected before they are
combined. The output from Listing 7, therefore, is the same as Figure 1. Listing 8, on the other hand, produces the
output in Figure 2. The shapes are connected by a line, each of which is really a Bezier curve.

Listing 8. bindShapes is found in the Graphic module in this chapter’s source code files as SC15.sxi.

Sub bindShapes()
 Dim oPage, oShapes, i%

 REM Create the shapes!
 drawFirstGraphic()
 oPage = ThisComponent.getDrawPages().getByName("Test Draw")

 oShapes = createUnoService("com.sun.star.drawing.ShapeCollection")
 For i = 0 To oPage.getCount()-1
 oShapes.add(oPage.getByIndex(i))
 Next
 oPage.bind(oShapes)
End Sub

Figure 2. Twenty lines bound together are connected with a line.

The unbind(XShape) method converts the shape to a PolyPolygonBezierShape (if it is not already) and then each
line segment is converted to a new PolyPolygonBezierShape. The original shape is removed from the draw page and
deleted. If unbind() is used on the shape in Figure 2, the output still looks like Figure 2, but 776 shapes are used.

380 OpenOffice.org Macros Explained

The methods group() and ungroup() act like “undo” for each other. The methods bind()
and combine() are not “undo” for unbind() and split(), primarily because each shape is
converted to a PolyPolygonBezierShape.

Shapes
Graphical content is expressed as a shape object. Shape objects are created by the document and then added to the draw
page. OOo supports numerous types of shapes (see Table 3).

Table 3. Shape types supported by OOo.

ShapeType Description

ClosedBezierShape A series of Bezier shapes that are closed.

ConnectorShape Used to connect shapes or glue points.

ControlShape A shape that displays a control such as a button.

EllipseShape Draw a circle, an ellipse, or an arc.

GraphicObjectShape Display a graphic object such as a bitmap image. There are separate types for
presentation documents and drawing documents.

GroupShape Represent multiple shapes as a single shape.

LineShape A single line.

MeasureShape A shape used for measuring in a diagram.

OLE2Shape Display an OLE object in a presentation document. There are separate types for
presentation documents and drawing documents.

OpenBezierShape A series of Bezier lines.

PageShape Display a preview of another page. There are separate types for presentation documents
and drawing documents.

PolyLineShape A series of connected straight lines.

PolyPolygonBezierShape A polygon using Bezier curves.

PolyPolygonShape A series of straight lines with the first and last points connected.

RectangleShape Draw rectangles.

TextShape Box designed to hold text.

PluginShape Represent a media type that is not directly supported.

TitleTextShape A TextShape for titles in a presentation document.

SubtitleShape A TextShape for subtitles in a presentation document.

OutlinerShape A TextShape for outlines in a presentation document.

ChartShape Chart shape in a presentation document.

NotesShape A TextShape for notes in a presentation document.

HandoutShape A drawing document PageShape for handouts in a presentation document.

A shape’s position is stored in a com.sun.star.awt.Point structure, which contains two Long Integer values, X and Y,
representing the upper-left corner in 1/100 mm. A shape’s size is stored in a com.sun.star.awt.Size structure, which
contains two Long Integer values, Width and Height, in 1/100 mm. See Table 4.

Chapter 15: Draw and Impress Documents 381

Table 4. Methods supported by Shape objects.

Method Description

getPosition() Get the shape’s current position in 1/100 mm.

setPosition(Point) Set the shape’s current position in 1/100 mm.

getSize() Get the shape’s current size in 1/100 mm.

setSize(Size) Set the shape’s current size in 1/100 mm.

getGluePoints() Get an object that provides indexed access to a set of glue points used internally by the object.
Each glue point is a com.sun.star.drawing.GluePoint2 structure (see Table 16).

getShapeType() String representing the shape’s type.

Macros that deal with shape objects frequently require the Size and Point structures. The two methods in Listing 9
make it easier to create and set these structures.

Listing 9. CreatePoint and CreateSize are found in the Graphic module in this chapter’s source code files
as SC15.sxi.

Function CreatePoint(ByVal x As Long,ByVal y As Long) As com.sun.star.awt.Point
 Dim oPoint
 oPoint = createUnoStruct("com.sun.star.awt.Point")
 oPoint.X = x : oPoint.Y = y
 CreatePoint = oPoint
End Function

Function CreateSize(ByVal x As Long,ByVal y As Long) As com.sun.star.awt.Size
 Dim oSize
 oSize = createUnoStruct("com.sun.star.awt.Size")
 oSize.Width = x : oSize.Height = y
 CreateSize = oSize
End Function

Common properties
Interfaces define methods and can be derived from other interfaces. Services, on the other hand, implement interfaces
and other services. Services also define properties. Some services are defined strictly to define a group of related
properties. The properties defined by the Shape service are general and applicable to most shape types (see Table 5).

Table 5. Properties defined by the com.sun.star.drawing.Shape service.

Property Description

ZOrder Long Integer representing the ZOrder of this shape. This controls the drawing order of objects,
effectively moving an object forward or backward.

LayerID Short Integer identifying the layer that contains the shape.

LayerName Name of the layer that contains the shape.

Printable If True, the shape is included in printed output.

MoveProtect If True, the shape cannot be moved interactively by the user.

Name Shape name as a String.

SizeProtect If True, the user may not change the shape’s size.

Style Shape’s style as a com.sun.star.style.XStyle object.

Transformation Transformation matrix of type com.sun.star.drawing.HomogenMatrix3 that can contain
translation, rotation, shearing, and scaling.

OOo defines separate services that encapsulate properties and methods specific to lines, text, shadows, shape
rotation, and filling area. Not all shape types support all of these services. For example, it makes no sense for a line
shape to support the properties and methods related to filling areas. Table 6 provides a quick overview of the special
services supported by each shape type.

382 OpenOffice.org Macros Explained

Table 6. Which shapes support which service.

ShapeType Text Line Fill Shadow Rotation

ClosedBezierShape x x x x x

ConnectorShape x x x x

ControlShape

EllipseShape x x x x x

GraphicObjectShape x x x

GroupShape

LineShape x x x x

MeasureShape x x x x

OLE2Shape

OpenBezierShape x x x x

PageShape

PolyLineShape x x x x

PolyPolygonBezierShape x x x x x

PolyPolygonShape x x x x x

RectangleShape x x x x x

TextShape x x x x x

TitleTextShape x x x x x

SubtitleShape x x x x x

OutlinerShape x x x x x

ChartShape

NotesShape x x x x x

HandoutShape

Drawing text service
Any shape that supports the com.sun.star.drawing.Text service has the ability to contain text. The drawing text service
supports the standard com.sun.star.text.XText interface and a special set of drawing text properties. Besides character
and paragraph properties, the drawing text properties service defines properties specifically designed for shape objects
(see Table 7).

Table 7. Properties defined by the com.sun.star.drawing.TextProperties service.

Property Description

IsNumbering If True, numbering is ON for the text in this shape.

NumberingRules Describes the numbering levels as a sequence of com.sun.star.style.NumberingRule.

TextAutoGrowHeight If True, the shape height changes automatically when text is added or removed.

TextAutoGrowWidth If True, the shape width changes automatically when text is added or removed.

TextContourFrame If True, the text is aligned with the left edge of the shape.

TextFitToSize Enumerated value of type com.sun.star.drawing.TextFitToSizeType:
• NONE – The text size is defined by the font properties.

• PROPORTIONAL – Scale the text if the shape is scaled.

• ALLLINES – Like PROPORTIONAL, but the width of each row is also scaled.

• RESIZEATTR – If the shape is scaled, scale the font attributes.

Chapter 15: Draw and Impress Documents 383

Property Description

TextHorizontalAdjust Enumerated value of type com.sun.star.drawing.TextHorizontalAdjust:
• LEFT – The left edge of the text is adjusted to the left edge of the shape.

• CENTER – The text is centered inside the shape.

• RIGHT – The right edge of the text is adjusted to the right edge of the shape.

• BLOCK – The text extends from the left to the right edge of the shape.

TextVerticalAdjust Enumerated value of type com.sun.star.drawing.TextVerticalAdjust:
• TOP – The top edge of the text is adjusted to the top edge of the shape.

• CENTER – The text is centered inside the shape.

• BOTTOM – The bottom edge of the text is adjusted to the bottom edge of
the shape.

• BLOCK – The text extends from the top to the bottom edge of the shape.

TextLeftDistance Distance from the left edge of the shape to the text as a Long Integer.

TextRightDistance Distance from the right edge of the shape to the text as a Long Integer.

TextUpperDistance Distance from the upper edge of the shape to the text as a Long Integer.

TextLowerDistance Distance from the lower edge of the shape to the text as a Long Integer.

TextMaximumFrameHeight Limit a shape’s height as it grows automatically as you enter text.

TextMaximumFrameWidth Limit a shape’s width as it grows automatically as you enter text.

TextMinimumFrameHeight Limit a shape’s minimum height as it grows automatically as you enter text.

TextMinimumFrameWidth Limit a shape’s minimum width as it grows automatically as you enter text.

TextAnimationAmount Number of pixels the text is moved in each animation step.

TextAnimationCount Number of times the text animation is repeated.

TextAnimationDelay Delay, in thousandths of a second, between each animation step.

TextAnimationDirection Enumerated value of type com.sun.star.drawing.TextAnimationDirection:
LEFT, RIGHT, UP, and DOWN.

TextAnimationKind Enumerated value of type com.sun.star.drawing.TextAnimationKind:
• NONE – No animation.

• BLINK – Continuously switch the text between visible and invisible.

• SCROLL – Scroll the text.

• ALTERNATE – Scroll the text from one side to the other and back.

• SLIDE – Scroll the text from one side to the final position and stop.

TextAnimationStartInside If True, the text is visible at the start of the animation.

TextAnimationStopInside If True, the text is visible at the end of the animation.

TextWritingMode Enumerated value of type com.sun.star.text.TextWritingMode:
• LR_TB – Text is written left to right and top to bottom.

• RL_TB – Text is written right to left and top to bottom.

• TB_RL – Text is written top to bottom and lines are placed right to left.

The default behavior of a MeasureShape (see Figure 3) is to display the actual length of the shape. The macro in
Listing 10 creates two measure shapes and changes the text of one of them to “Width”. To help illustrate setting the
properties in Table 7, the TextAnimationKind property is set to SCROLL so that the text continuously scrolls from right
to left.

Listing 10. drawMeasureShape is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub drawMeasureShape()
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oStart As new com.sun.star.awt.Point
 Dim oEnd As new com.sun.star.awt.Point

 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 oShape = ThisComponent.createInstance("com.sun.star.drawing.MeasureShape")
 oPage.add(oShape)
 REM The following values MUST be set AFTER the object is inserted.

384 OpenOffice.org Macros Explained

 oStart.X = oPage.Width / 4 : oEnd.X = oPage.Width / 2
 oStart.Y = oPage.Height/4 : oEnd.Y = oPage.Height/4
 oShape.StartPosition = oStart
 oShape.EndPosition = oEnd
 oShape.setString("Width")
 oShape.TextAnimationKind = com.sun.star.drawing.TextAnimationKind.SCROLL

 oShape = ThisComponent.createInstance("com.sun.star.drawing.MeasureShape")
 oPage.add(oShape)
 oStart.X = oPage.Width / 5 : oEnd.X = oPage.Width / 5
 oStart.Y = oPage.Height/4 : oEnd.Y = oPage.Height/2.5
 oShape.StartPosition = oStart
 oShape.EndPosition = oEnd
End Sub

Figure 3. By default, measure shapes show the actual size—you can override this.

Drawing line properties
Shapes that support the com.sun.star.drawing.LineProperties service can influence how lines are drawn. Most shapes
support line properties because most shapes contain lines of some sort. The specific properties dealing with line
endpoints and start points are supported only by shapes with open ends. See Table 8.

Table 8. Properties defined by the com.sun.star.drawing.LineProperties service.

Property Description

LineStyle Enumerated value of type com.sun.star.drawing.LineStyle: NONE (the line is hidden), SOLID,
and DASH.

LineDash Enumerated value of type com.sun.star.drawing.LineDash that defines how dashed lines are
drawn.
• Style – Enumerated value of type com.sun.star.drawing.DashStyle: RECT, ROUND,

RECTRELATIVE, and ROUNDRELATIVE.
• Dots – Number of dots in this LineDash as a Long Integer.

• DotLen – Length of a dot as a Long Integer.

• Dashes – Number of dashes as a Short Integer.

• DashLen – Length of a single dash as a Long Integer.

• Distance – Distance between the dots as a Long Integer.

LineColor Line color as a Long Integer.

LineTransparence Line transparency percentage as a Short Integer.

LineWidth Line width in 1/100 mm as a Long Integer.

LineJoint Enumerated value of type com.sun.star.drawing.LineJoint:
• NONE – The joint between lines is not connected.

• MIDDLE – The middle value between joints is used.

• BEVEL – The edges are joined by lines.

• MITER – Lines join at intersections.

• ROUND – Lines are joined with an arc.

LineStartName Name of the line start point’s PolyPolygonBezierCoords.

LineStart Line start in the form of a PolyPolygonBezierCoords .

Chapter 15: Draw and Impress Documents 385

Property Description

LineEnd Line end in the form of a PolyPolygonBezierCoords.

LineStartCenter If True, the line starts from the center of the polygon.

LineStartWidth Width of the line start polygon.

LineEndCenter If True, the line ends in the center of the polygon.

LineEndWidth Width of the line end polygon.

Filling space
Shapes that support the com.sun.star.drawing.FillProperties service (see Table 9) are able to control how open area in
the shape is filled. In general, if the shape is closed, it can be filled.

Table 9. Properties defined by the com.sun.star.drawing.FillProperties service.

Property Description

FillStyle Enumerated value of type com.sun.star.drawing.FillStyle: NONE, SOLID, GRADIENT,
HATCH, and BITMAP.

FillColor Color to use if the FillStyle is SOLID.

FillTransparence Transparency percentage if the FillStyle is SOLID.

FillTransparenceGradientName Name of the gradient style to use; empty is okay.

FillTransparenceGradient Defines the gradient with a com.sun.star.awt.Gradient structure:
• Style – Enumerated value of type com.sun.star.awt.GradientStyle: LINEAR, AXIAL,

RADIAL, ELLIPTICAL, SQUARE, and RECT.
• StartColor – Color at the start of the gradient.

• EndColor – Color at the end of the gradient.

• Angle – Angle of the gradient in 1/10 degree.

• Border – Percent of the total width, where just the start color is used.

• XOffset – X-coordinate, where the gradient begins.

• YOffset – Y-coordinate, where the gradient begins.

• StartIntensity – Intensity at the start of the gradient.

• EndIntensity – Intensity at the end of the gradient.

• StepCount – Number of times the color changes.

FillGradientName If the FillStyle is GRADIENT, this is the name of the fill gradient style used.

FillGradient If the FillStyle is GRADIENT, this describes the gradient used.

FillHatchName If the FillStyle is GRADIENT, this is the name of the fill hatch style used.

FillHatch If the FillStyle is HATCH, this describes the hatch used.

FillBitmapName If the FillStyle is BITMAP, this is the name of the fill bitmap style used.

FillBitmap If the FillStyle is BITMAP, this is the bitmap used.

FillBitmapURL If the FillStyle is BITMAP, this is a URL to the bitmap used.

FillBitmapOffsetX The horizontal offset where the tile starts.

FillBitmapOffsetY The vertical offset where the tile starts. It is given as a percentage in relation to the width
of the bitmap.

FillBitmapPositionOffsetX Every second line of tiles is moved the given percentage of the witdh of the bitmap.

FillBitmapPositionOffsetY Every second row of tiles is moved the given percentage of the width of the bitmap.

FillBitmapRectanglePoint The RectanglePoint specifies the position inside the bitmap to use as the top-left position
for rendering.

FillBitmapLogicalSize Specifies if the size is given in percentage or as an absolute value.

FillBitmapSizeX The width of the tile for filling.

FillBitmapSizeY The height of the tile for filling.

FillBitmapMode This enum selects how an area is filled with a single bitmap.

FillBackground If True, the transparent background of a hatch-filled area is drawn in the current
background color.

386 OpenOffice.org Macros Explained

The macro in Listing 11 draws a closed Bezier shape. The fill style is set to use a gradient, which means that the
darkness of the shape changes over the shape. The resulting shape (see Figure 4) contains narrow bands of each color or
intensity. You can smooth the appearance of the gradient by using the FillTransparenceGradient property as mentioned
in Table 9.

Listing 11. DrawClosedBezierShape is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub DrawClosedBezierShape
 Dim oDoc
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oCoords 'Coordinates of the polygon to insert

 oCoords = createUnoStruct("com.sun.star.drawing.PolyPolygonBezierCoords")

 REM Fill in the actual coordinates. The first and last points
 REM are normal points and the middle points are Bezier control points.
 oCoords.Coordinates = Array(_
 Array(_
 CreatePoint(1000, 1000),_
 CreatePoint(3000, 4000),_
 CreatePoint(3000, 4000),_
 CreatePoint(5000, 1000)_
)_
)
 oCoords.Flags = Array(_
 Array(_
 com.sun.star.drawing.PolygonFlags.NORMAL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.NORMAL _
)_
)

 oDoc = ThisComponent
 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 oShape = oDoc.createInstance("com.sun.star.drawing.ClosedBezierShape")
 oPage.add(oShape)
 oShape.FillStyle = com.sun.star.drawing.FillStyle.GRADIENT
 oShape.PolyPolygonBezier = oCoords
End Sub

Figure 4. Bezier shape using a gradient fill.

Shadows
Shapes that support the ShadowProperties service can be drawn with a shadow. You can set the shadow location and
color by using the properties in Table 10.

Chapter 15: Draw and Impress Documents 387

Table 10. Properties defined by the com.sun.star.drawing.ShadowProperties service.

Property Description

Shadow If True, the shape has a shadow.

ShadowColor Color of the shadow as a Long Integer.

ShadowTransparence Shadow transparency as a percentage.

ShadowXDistance Horizontal distance of the left edge of the shape to the shadow.

ShadowYDistance Vertical distance of the top edge of the shape to the shadow.

A common method for drawing shadows is to draw the shape at an offset location using a shadow color, and
then draw the shape normally (see Figure 5). With this in mind, consider the properties ShadowXDistance and
ShadowYDistance as the distance that the “shadow object” is shifted when it is drawn. The default values for
ShadowXDistance and ShadowYDistance are positive, which shifts the shadow right and down. A negative shadow
distance shifts the shadow left and up. The macro in Listing 12 draws two boxes; the first box uses a standard shadow
that is shifted right and down, and the second box has the shadow shifted left and down (see Figure 5).

Listing 12. drawRectangleWithShadow is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub drawRectangleWithShadow()
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert

 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 oShape = ThisComponent.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(1000, 1000))
 oShape.setSize(createSize(4000, 1000))
 oShape.setString("box 1")
 oShape.Shadow = True

 oShape = ThisComponent.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(6000, 1000))
 oShape.setSize(createSize(4000, 1000))
 oShape.setString("box 2")
 oShape.Shadow = True
 oShape.ShadowXDistance = -150
 oShape.CornerRadius = 100
End Sub

Figure 5. Notice the different shadows and that box 2 has rounded corners.

Rotation and shearing
The com.sun.star.drawing.RotationDescriptor provides the ability to rotate and shear a shape. Shear stretches a shape
and would, for example, change a rectangle into a parallelogram. The RotateAngle property is a Long Integer measured
in 1/100 degrees. The shape is rotated counterclockwise around the center of the shape’s bounding box. The ShearAngle
property is also a Long Integer measured in 1/100 degrees, but the shape is sheared clockwise around the center of the
bounding box.

The macro in Listing 13 rotates a rectangle 20 degrees counterclockwise and shears a rectangle 25 degrees
clockwise. This code also draws a normal rectangle with no rotation or shear to help you visualize the effects (see
Figure 6).

Listing 13. drawRectangleWithShadow is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

388 OpenOffice.org Macros Explained

Sub drawRotateRectangle()
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert

 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 oShape = ThisComponent.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(1000, 1000))
 oShape.setSize(createSize(4000, 1500))
 oShape.setString("box 1")
 oShape.RotateAngle = 2000 '20 degrees

 oShape = ThisComponent.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(1000, 1000))
 oShape.setSize(createSize(4000, 1500))
 oShape.FillStyle = com.sun.star.drawing.FillStyle.NONE
 oShape.LineStyle = com.sun.star.drawing.LineStyle.DASH

 oShape = ThisComponent.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(6000, 1000))
 oShape.setSize(createSize(4000, 1500))
 oShape.setString("box 2")
 oShape.ShearAngle = 2500 '25 degrees

 oShape = ThisComponent.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(6000, 1000))
 oShape.setSize(createSize(4000, 1500))
 oShape.FillStyle = com.sun.star.drawing.FillStyle.NONE
 oShape.LineStyle = com.sun.star.drawing.LineStyle.DASH
End Sub

Figure 6. The rectangles with dashed lines are the original rectangles.

Shape types
OOo supports many different shape types, which build on each other. Most of the shape types are obvious from their
names. For example, a LineShape is a line. I was initially confused, however, by the gratuitous use of the word “Poly” in
shape names such as PolyLineShape and PolyPolygonShape. The prefix “Poly” comes from the Greek and it means
“many.” So in OOo, a Polygon is a figure containing many angles, a PolyLineShape contains many line shapes, and a
PolyPolygonShape contains many polygon shapes.

Simple lines
The purpose of the LineShape service is to draw a simple line. A LineShape requires an initial position and a size. The
macro in Listing 14 draws a line from the point (1000, 1000) to the point (1999, 1999). The endpoint of the line is set
by setting the shape’s size.

Chapter 15: Draw and Impress Documents 389

Listing 14. SimpleLine is found in the Graphic module in this chapter’s source code files as SC15.sxi.

Sub SimpleLine
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert

 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 oShape = ThisComponent.createInstance("com.sun.star.drawing.LineShape")
 oPage.add(oShape)
 oShape.setPosition(CreatePoint(1000, 1000))
 oShape.setSize(CreateSize(1000, 1000))
End Sub

Although I’ve never seen it used, the LineShape service supports the PolyPolygonDescriptor service (see Table
11). The implication is that internally simple lines are represented as an open polygon that contains one line. The
PolyPolygonDescriptor is used in other services as well.

The PolygonKind enumeration identifies the polygon type (see Table 12). The PolygonKind is a read-only
property in the PolyPolygonDescriptor service (see Table 11). In other words, you can see what the type is, but you can’t
set it.

Table 11. Properties in the com.sun.star.drawing.PolyPolygonDescriptor service.

Property Description

PolygonKind This read-only property identifies the polygon type (see Table 12).

PolyPolygon Reference points for this polygon. This is an array of arrays. Each contained array is an array of
com.sun.star.awt.Point structures. These points are used to draw the polygon and may have
been transformed by a rotation or other transformation.

Geometry These are the PolyPolygon points with no transformations.

Table 12. Values defined by the com.sun.star.drawing.PolygonKind enumeration.

Value Description

LINE Identifies a LineShape.

POLY Identifies a PolyPolygonShape.

PLIN Identifies a PolyLineShape.

PATHLINE Identifies an OpenBezierShape.

PATHFILL Identifies a ClosedBezierShape.

FREELINE Identifies an OpenFreeHandShape.

FREEFILL Identifies a ClosedFreeHandShape.

PATHPOLY Identifies a PolyPolygonPathShape.

PATHPLIN Identifies a PolyLinePathShape.

The PolyPolygon property in Table 11 allows you to inspect the actual points used in the creation of the line.
The code in Listing 15 assumes that oShape contains a LineShape object and it displays the two points in the line.

Listing 15. Inspect the points used in a LineShape.

 x = oShape.PolyPolygon(0)
 MsgBox "" & x(0).X & " and " & x(0).Y
 MsgBox "" & x(1).X & " and " & x(1).Y

PolyLineShape
The LineShape service defines a single line, and the PolyLineShape service defines a series of lines. A LineShape is
defined by setting its position and size. A PolyLineShape, however, is defined by the PolyPolygonDescriptor (see Table
11). Although it’s easy to create a PolyLineShape when you know how, it isn’t widely understood.

390 OpenOffice.org Macros Explained

The PolyPolygon property is an array of arrays that contain points.

The lines in the PolyLineShape are defined by the PolyPolygon property, which is an array that contains one or
more arrays of points. Each array of points is drawn as a series of connected lines, but each array is not specifically
connected to the other. The macro in Listing 16 generates two arrays of points (oPoints_1 and oPoints_2) and then the
arrays are stored in another array. See Figure 7.

Listing 16. SimplePolyLineShape is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub SimplePolyLineShape
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oPoints_1 'First set of points to plot
 Dim oPoints_2 'Second set of points to plot

 oPoints_1 = Array(_
 CreatePoint(1000, 1000),_
 CreatePoint(3000, 2000),_
 CreatePoint(1000, 2000),_
 CreatePoint(3000, 1000)_
)

 oPoints_2 = Array(_
 CreatePoint(4000, 1200),_
 CreatePoint(4000, 2000),_
 CreatePoint(5000, 2000),_
 CreatePoint(5000, 1200)_
)

 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 oShape = ThisComponent.createInstance("com.sun.star.drawing.PolyLineShape")
 oPage.add(oShape)
 oShape.PolyPolygon = Array(oPoints_1, oPoints_2)
 oShape.LineWidth = 50
End Sub

Figure 7. A single PolyLineShape produces two shapes that are not connected.

The shape is added to the draw page before points are assigned to the PolyPolygon property.

The PolyPolygon property (shown in Listing 17) is an array of arrays. You can run the macro in Listing 16 with
only one set of points, but the single array of points must still reside inside a second array.

Listing 17. The PolyPolygon property is an array of arrays of points.

oShape.PolyPolygon = Array(oPoints_1)

PolyPolygonShape
The PolyPolygonShape service defines a series of closed polygons that are not connected (see Figure 8). This service is
essentially a closed-shape version of the PolyLineShape. Because it produces closed shapes, the PolyPolygonShape
service supports fill properties.

Chapter 15: Draw and Impress Documents 391

The macro in Listing 18 uses the same set of points as the macro in Listing 16, but I moved things around to
demonstrate different methods for creating an array of arrays of points. Both macros, however, create the shape and add
it to the draw page before setting the properties.

Listing 18. SimplePolyPolygonShape is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub SimplePolyPolygonShape
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert

 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 oShape = ThisComponent.createInstance("com.sun.star.drawing.PolyPolygonShape")
 oPage.add(oShape)
 oShape.PolyPolygon = Array(_
 Array(CreatePoint(1000, 1000),_
 CreatePoint(3000, 2000),_
 CreatePoint(1000, 2000),_
 CreatePoint(3000, 1000)_
),_
 Array(CreatePoint(4000, 1200),_
 CreatePoint(4000, 2000),_
 CreatePoint(5000, 2000),_
 CreatePoint(5000, 1200)_
)_
)

 oShape.LineWidth = 50
End Sub

Figure 8. The PolyPolygonShape produces a closed-shape version of the PolyLineShape.

RectangleShape and TextShape
Externally, the RectangleShape and the TextShape are virtually identical. The two shape types support the same set of
services (except for the defining service, of course) and they can be configured to produce the same output. The primary
difference between the two shape types is their default values while producing output. In principle, properties can be
adjusted from default values, so that each type could produce either output. The macro in Listing 19 creates a rectangle
shape and a text shape next to each other (see Figure 9).

Listing 19. SimpleRectangleShape is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub SimpleRectangleShape
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert

 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 oShape = ThisComponent.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)

 oShape.setPosition(createPoint(1000, 1000))
 oShape.setSize(createSize(6000, 1000))
 oShape.setString("rectangle")
 oShape.Shadow = True
 oShape = ThisComponent.createInstance("com.sun.star.drawing.TextShape")
 oPage.add(oShape)

 oShape.setPosition(createPoint(8000, 1000))
 oShape.setSize(createSize(10000, 1000))
 oShape.setString("text")

392 OpenOffice.org Macros Explained

 oShape.Shadow = True
End Sub

Figure 9. Two shapes that are drawn in the same way—but with different, nearly identical shape types that
have different default values—produce different output.

The RectangleShape and the TextShape types both support the CornerRadius property. The corner radius is a Long
Integer that indicates the radius of the circle used to produce the corners. This is demonstrated in Figure 5 as produced by
Listing 12.

EllipseShape
A mathematician would say that an ellipse is a closed curve that is formed from two points (called the foci) in which the
sum of the distances from any point on the curve to the two points is a constant. If the two foci are at the same point, the
ellipse is a circle. In simpler terms, an ellipse is a circle or a squashed circle.

While drawing a rectangle, the position identifies the upper-left corner of the rectangle and then the size defines the
width and height. If the same point and size is used to draw an ellipse, the ellipse will be contained inside the rectangle
and will just barely touch the four sides of the rectangle. Mathematically, the sides of the rectangle are tangent to the
ellipse at its principal axes, the maximum and minimum distances across the ellipse. The macro in Listing 20 starts by
drawing four ellipse shapes. The final ellipse is rotated 30 degrees. The macro then draws a rectangle using the same
position, size, and rotation as the last ellipse (see Figure 10). The final rectangle helps to illustrate the relationship
between a rectangle and an ellipse.

Listing 20. SimpleEllipseShapes is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub SimpleEllipseShapes
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim i%
 Dim x
 Dim nLocs
 nLocs = Array(_
 Array(CreatePoint(1000, 1000), createSize(1000, 1000)),_
 Array(CreatePoint(3000, 1000), createSize(1000, 1500)),_
 Array(CreatePoint(5000, 1000), createSize(1500, 1000)),_
 Array(CreatePoint(7000, 1000), createSize(1500, 1000))_
)

 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 For i = LBound(nLocs) To UBound(nLocs)
 oShape = ThisComponent.createInstance("com.sun.star.drawing.EllipseShape")
 oPage.add(oShape)
 x = nLocs(i)
 oShape.setPosition(x(0))
 oShape.setSize(x(1))
 oShape.setString(i)
 Next
 oShape.RotateAngle = 3000

 REM Now draw a rectangle the same size as the last ellipse.
 oShape = ThisComponent.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(x(0))
 oShape.setSize(x(1))
 oShape.RotateAngle = 3000
 oShape.FillStyle = com.sun.star.drawing.FillStyle.NONE
End Sub

Chapter 15: Draw and Impress Documents 393

Figure 10. The size parameters determine shape; other parameters set position and orientation.

The EllipseShape service contains a property of type CircleKind that determines whether the entire ellipse should
be drawn, or only a portion of it (see Table 13). In other words, you can draw an arc. The properties CircleStartAngle
and CircleEndAngle define where the arc starts and ends. Each ellipse in Figure 10 uses a FULL CircleKind.

Table 13. Values defined by the com.sun.star.drawing.CircleKind enumeration.

Value Description

com.sun.star.drawing.CircleKind.FULL A full ellipse.

com.sun.star.drawing.CircleKind.SECTION An ellipse with a cut connected by a line.

com.sun.star.drawing.CircleKind.CUT An ellipse with a cut connected by two lines.

com.sun.star.drawing.CircleKind.ARC An ellipse with an open cut.

The four different circle kinds are drawn by Listing 21 and shown in Figure 11.

Listing 21. ArcEllipseShapes is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub ArcEllipseShapes
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim i%
 Dim x
 Dim nLocs
 nLocs = Array(_
 com.sun.star.drawing.CircleKind.FULL,_
 com.sun.star.drawing.CircleKind.SECTION,_
 com.sun.star.drawing.CircleKind.CUT,_
 com.sun.star.drawing.CircleKind.ARC,_
)

 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 For i = LBound(nLocs) To UBound(nLocs)
 oShape = ThisComponent.createInstance("com.sun.star.drawing.EllipseShape")
 oPage.add(oShape)
 oShape.setPosition(CreatePoint((i+1)*2000, 1000))
 oShape.setSize(CreateSize(1000,700))
 oShape.setString(i)
 oShape.CircleStartAngle = 9000
 oShape.CircleEndAngle = 36000
 oShape.CircleKind = nLocs(i)
 Next
End Sub

Figure 11. Each supported CircleKind drawn in order.

Bezier curves
A Bezier curve is a smooth curve controlled by multiple points. Bezier curves connect the first and last points, but are
only influenced by the other points. Mathematicians like Bezier curves because they are invariant under any affine
mapping (any arbitrary combination of translation or rotation). Computer graphics professionals like Bezier curves
because they are easy to manipulate and transform.

394 OpenOffice.org Macros Explained

Bezier curves are controlled by a PolyPolygonBezierDescriptor (see Table 14), which is almost identical to the
PolyPolygonDescriptor described in Table 11. The difference between the two descriptors is that each point in the
Bezier curve is categorized based on how the point affects the curve.

Table 14. Properties in the com.sun.star.drawing.PolyPolygonBezierDescriptor service.

Property Description

PolygonKind This read-only property identifies the polygon type (see Table 12).

PolyPolygonBezier Reference points for this Bezier curve. This is a PolyPolygonBezierCoords structure.
The structure contains an array of points and an array of flags to categorize each point
as to its function in the curve.

Geometry This is the PolyPolygonBezierCoords with no transformations.

The PolygonBezier property (see Table 14) is a PolyPolygonBezierCoords structure that contains two properties,
Coordinates and Flags. The Coordinates property is an array of arrays of points that represent the control points for the
Bezier curve. The Flags property is an array of arrays of PolygonFlags (see Table 15) that identifies how the
corresponding point affects the curve.

Table 15. Values in the com.sun.star.drawing.PolygonFlags enumeration.

Value Description

NORMAL The curve travels through normal points.

SMOOTH The point is smooth through the point.

CONTROL Influence the curve.

SYMMETRIC The point is symmetric through the point.

The macro in Listing 22 draws a small circle at each point in the Coordinates array. Drawing each point helps to
visualize and understand how the different points affect the shape of a Bezier curve.

Listing 22. DrawControlPoints is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub DrawControlPoints(oCoords, oPage, oDoc, nWidth As Long)
 Dim oPoints 'One subarray of points
 Dim oPoint 'One point
 Dim oFlags 'One subarray of flags
 Dim oShape 'The circle to draw
 Dim nShape% 'Index into the oCoords arrays
 Dim i% 'General index variable

 For nShape = LBound(oCoords.Coordinates) To UBound (oCoords.Coordinates)
 oPoints = oCoords.Coordinates(nShape)
 oFlags = oCoords.Flags(nShape)
 For i = LBound(oPoints) To UBound(oPoints)
 oShape = oDoc.createInstance("com.sun.star.drawing.EllipseShape")
 oPage.add(oShape)
 oPoint = oPoints(i)
 REM To center the circle, I need to set the position
 REM as half width back and half width up.
 oShape.setPosition(CreatePoint(oPoint.X-nWidth/2, oPoint.Y-nWidth/2))
 oShape.setSize(CreateSize(nWidth, nWidth)
 Next
 Next
End Sub

Listing 23 draws two disconnected Bezier curves (see Figure 12). The second curve places two control points at
the same location. The DrawControlPoints macro in Listing 22 is used to draw the control points along with the Bezier
curve.

Listing 23. DrawOpenBezierCurves is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Chapter 15: Draw and Impress Documents 395

Sub DrawOpenBezierCurves()
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oDoc
 Dim i%
 Dim oCoords 'Coordinates of the polygon to insert

 oCoords = createUnoStruct("com.sun.star.drawing.PolyPolygonBezierCoords")

 REM Fill in the actual coordinates. The first and last points
 REM are normal points and the middle points are Bezier control points.
 oCoords.Coordinates = Array(_
 Array(_
 CreatePoint(1000, 1000),_
 CreatePoint(2000, 3000),_
 CreatePoint(3000, 0500),_
 CreatePoint(4000, 1000),_
),_
 Array(_
 CreatePoint(5000, 1000),_
 CreatePoint(6500, 0200),_
 CreatePoint(6500, 0200),_
 CreatePoint(8000, 1000),_
),_
)
 oCoords.Flags = Array(_
 Array(_
 com.sun.star.drawing.PolygonFlags.NORMAL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.NORMAL,_
),_
 Array(_
 com.sun.star.drawing.PolygonFlags.NORMAL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.NORMAL,_
)_
)

 oDoc = ThisComponent
 oPage = createDrawPage(ThisComponent, "Test Draw", True)
 oShape = oDoc.createInstance("com.sun.star.drawing.OpenBezierShape")
 oPage.add(oShape)
 oShape.PolyPolygonBezier = oCoords
 DrawControlPoints(oCoords, oPage, oDoc, 100)
End Sub

Figure 12. Notice how the control points influence the curve.

Not all combinations of points and flags are valid. A complete discussion of what constitutes a valid combination of
points and flags is beyond the scope of this book. A run-time error occurs if you use an incorrect number of points or an
unsupported sequence of control flags.

ConnectorShape
Use the ConnectorShape to provide a connection between two shapes. A “glue point” is a position inside a shape where
the endpoint of a ConnectorShape can connect. Each glue point is defined by the GluePoint2 structure (see Table 16).

Table 16. Properties in the com.sun.star.drawing.GluePoint2 structure.

396 OpenOffice.org Macros Explained

Property Description

Position Glue-point position as a point structure.

IsRelative If True, Position is given in 1/100 percent.

PositionAlignment com.sun.star.drawing.Alignment enumerated value that specifies how the point is moved if the
shape is resized. Valid values include: TOP_LEFT, TOP, TOP_RIGHT, LEFT, CENTER,
RIGHT, BOTTOM_LEFT, BOTTOM, and BOTTOM_RIGHT.

Escape com.sun.star.drawing.EscapeDirection enumerated value that specifies the escape direction for
a glue point. Valid values include: SMART, LEFT, RIGHT, UP, DOWN, HORIZONTAL, and
VERTICAL.

IsUserDefined If False, this is a default glue point.

Each shape contains a default glue point at the top, right, bottom, and left of the shape. You can access a shape’s
glue points by using the getGluePoints() method (see Table 4). The index of the default glue points are 0 (top),
1 (right), 2 (bottom), and 3 (left). You also can add new glue points to a shape’s default glue points (see Listing 25).

Connector shapes contain StartPosition and EndPosition properties (see Table 17), which identify the connector’s
start and end positions. The start and end positions are used only if the corresponding properties StartShape and
EndShape are empty. If the StartShape and EndShape properties are not empty, the connector shape connects to a glue
point in the corresponding shape. Connector shapes reference other shapes’ glue points by index using the
StartGluePointIndex and EndGluePointIndex properties.

Table 17. Properties in the com.sun.star.drawing.ConnectorShape service.

Property Description

StartShape Start shape, or empty if the start point is not connected to a shape.

StartGluePointIndex Index of the glue point in the start shape.

StartPosition Start point position in 1/100 mm. You can set the position only if the start point is not connected,
but you can always read the point.

EndShape End shape, or empty if the start point is not connected to a shape.

EndPosition End point position in 1/100 mm. You can set the position only if the end point is not connected,
but you can always read the point.

EndGluePointIndex Index of the glue point in the end shape.

EdgeLine1Delta Distance of line 1.

EdgeLine2Delta Distance of line 2.

EdgeLine3Delta Distance of line 3.

EdgeKind Type of connector (see Table 18).

Four connector types are supported (see Table 18). The connector type determines how the line is drawn between
the two points. The STANDARD type prefers to use three lines to connect the shapes, but it will use more lines if
required.

Table 18. Properties in the com.sun.star.drawing.ConnectorType enumeraiton.

Value Description

STANDARD The ConnectorShape is drawn with three lines, with the middle line perpendicular to the other two.

CURVE The ConnectorShape is drawn as a curve.

LINE The ConnectorShape is drawn as one straight line.

LINES The ConnectorShape is drawn with three lines.

As of OOo 1.1.1, the LINE connector type is not available by name; you must use the
corresponding integer value of 2. This is scheduled to be fixed by OOo 2.0.

The macro in Listing 24 draws four rectangles and then connects the rectangles using a ConnectorShape. Although
the macro specifies the initial glue point, the end glue point is automatically chosen by OOo. If the macro did not
explicitly set the initial glue point, it also would be automatically chosen. When a glue point is automatically chosen, it
is done intelligently, as you can see in Figure 13.

Chapter 15: Draw and Impress Documents 397

Listing 24. DrawConnectorShape is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub DrawConnectorShape
 PrintConTypes()
 Dim oPage 'Page on which to draw
 Dim oShapes 'Shape to insert
 Dim oShape 'Shape to insert
 Dim nConTypes
 Dim oDoc
 Dim i%

 oDoc = ThisComponent

 REM The value com.sun.star.drawing.ConnectorType.LINE does not work!
 nConTypes = Array(_
 com.sun.star.drawing.ConnectorType.STANDARD,_
 com.sun.star.drawing.ConnectorType.CURVE,_
 2,_
 com.sun.star.drawing.ConnectorType.LINES,_
)

 oShapes = Array(_
 oDoc.createInstance("com.sun.star.drawing.RectangleShape"),_
 oDoc.createInstance("com.sun.star.drawing.RectangleShape"),_
 oDoc.createInstance("com.sun.star.drawing.RectangleShape"),_
 oDoc.createInstance("com.sun.star.drawing.RectangleShape"),_
)

 REM Create the draw page and then add the shapes before manipulating them.
 oPage = createDrawPage(oDoc, "Test Draw", True)
 For i = 0 To 3
 oPage.add(oShapes(i))
 oShapes(i).setSize(createSize(1300, 1000))
 Next
 oShapes(0).setPosition(createPoint(1000, 1500))
 oShapes(1).setPosition(createPoint(4000, 1000))
 oShapes(2).setPosition(createPoint(7000, 500))
 oShapes(3).setPosition(createPoint(4000, 2500))

 For i = 0 To 3
 oShapes(i).setString(i)
 oShape = oDoc.createInstance("com.sun.star.drawing.ConnectorShape")
 oPage.add(oShape)
 oShape.StartShape = oShapes(i)
 oShape.StartGluePointIndex = i
 oShape.EndShape = oShapes((i + 1) MOD 4)
 oShape.EdgeKind = nConTypes(i)
 Next
End Sub

Figure 13. Notice the different connector types.

Many of a shape’s properties are reset when the shape is added to a draw page. Therefore, you
should set most properties after adding the shape to the draw page. It is also important to set
properties in the correct order because setting some properties resets other properties. For
example, setting a connector’s StartShape resets the StartGluePointIndex.

398 OpenOffice.org Macros Explained

Creating your own glue points
If you want to attach a connector to a shape at a location of your choosing, you must create a GluePoint2 structure and
add it to the shape. Modify Listing 24 by adding the code from Listing 25 immediately after setting the EdgeKind
property. Listing 25 creates a glue point located at the center of the rectangle (see Figure 14) and then uses this point as
the start point. Table 16 contains a description of the GluePoint2 structure.

Listing 25. DrawConnectorShape_Glue is found in the Graphic module in this chapter’s source code files
as SC15.sxi.

 Rem Now create a glue point in the center of the shape.
 oGlue = createUnoStruct("com.sun.star.drawing.GluePoint2")
 oGlue.IsRelative = False
 oGlue.Escape = com.sun.star.drawing.EscapeDirection.SMART
 oGlue.PositionAlignment = com.sun.star.drawing.Alignment.CENTER
 oGlue.IsUserDefined = True
 oGlue.Position.X = oShapes(i).getPosition().X + 650
 oGlue.Position.Y = oShapes(i).getPosition().Y + 500
 oShape.StartGluePointIndex = oShapes(i).getGluePoints().insert(oGlue)

Figure 14. Custom glue points: Connectors start in the middle of the rectangles.

Adding arrows by using styles
You can set many properties for a shape by creating a style. If you frequently use certain fill styles and shadow styles,
you should create a special style so you can quickly change the objects if required. Listing 26 displays the graphics
styles supported by an Impress document (shown in Figure 15).

You can add arrows to a shape by setting the shape’s style to “objectwitharrow”. If you don’t like the default values
in the “objectwitharrow” style, which produces very wide lines (see Figure 16), you can create your own style and use
that instead. Modify Listing 24 by adding the code from Listing 27 immediately after setting the EdgeKind property.

Listing 26. PrintStyles is found in the Graphic module in this chapter’s source code files as SC15.sxi.

Sub PrintStyles
 Dim oStyles
 Dim oStyleFamilies
 oStyleFamilies = ThisComponent.getStyleFamilies()
 MsgBox Join(oStyleFamilies.getElementNames(), CHR$(10)), 0, "Families"

 oStyles = ThisComponent.getStyleFamilies().getByName("graphics")
 MsgBox Join(oStyles.getElementNames(), CHR$(10)), 0, "Graphics Styles"
End Sub

Chapter 15: Draw and Impress Documents 399

Figure 15. Graphics styles supported by presentation documents.

Listing 27. DrawConnectorShape_Arrows is found in the Graphic module in this chapter’s source code files
as SC15.sxi.

 oStyles = oDoc.getStyleFamilies().getByName("graphics")
 oShape.Style = oStyles.getByName("objectwitharrow")

Figure 16. The default arrow style draws an arrow from the end shape to the start shape.

Forms
When a control is inserted into a document, it is stored in a form. Forms are contained in draw pages, which implement
the com.sun.star.form.XFormsSupplier interface. The visible portion of the control—what you see—is stored in a draw
page and represented by a ControlShape. The data model for the control is stored in a form and referenced by the
ControlShape. The method getForms() returns an object that contains the forms for the draw page (see Table 19).

Table 19. Some methods supported by the com.sun.star.form.Forms service.

Method Description

createEnumeration() Create an enumeration of the forms.

getByIndex(Long) Get a form by index.

getByName(String) Get a form by name.

getCount() Get the number of forms.

hasByName(String) Return True if the form with the specified name exists.

hasElements() Return True if the page contains at least one form.

insertByIndex(Long, Form) Insert a form by index.

insertByName(String, Form) Insert a form by name.

removeByIndex(Long) Remove a form by index.

removeByName(String) Remove the named form.

replaceByIndex(Long, Form) Replace a form by index.

replaceByName(String, Form) Replace a form by name.

The purpose of Listing 28 is to demonstrate how to add a form to a draw page. Forms are not interesting unless
they contain a control, so Listing 28 adds a drop-down list box with some values to select.

400 OpenOffice.org Macros Explained

Listing 28. AddAForm is found in the Graphic module in this chapter’s source code files as SC15.sxi.

Sub AddAForm
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oDoc 'ThisComponent
 Dim oForm 'Individual form
 Dim oControlModel 'Model for a control
 Dim s (0 To 5) As String

 REM Data for the combo box!
 s(0) = "Zero" : s(1) = "One" : s(2) = "Two"
 s(3) = "Three" : s(4) = "Four" : s(5) = "Five"

 oDoc = ThisComponent
 oPage = createDrawPage(oDoc, "Test Draw", True)

 REM Create a shape for the control.
 oShape = oDoc.createInstance("com.sun.star.drawing.ControlShape")
 oShape.Position = createPoint(1000, 1500)
 oShape.Size = createSize(2500, 800)

 REM Create a combo box model.
 oControlModel = oDoc.createInstance("com.sun.star.form.component.ComboBox")
 oControlModel.Name = "NumberSelection"
 oControlModel.Text = "Zero"
 oControlModel.Dropdown = True
 oControlModel.StringItemList = s()

 REM Set the shape's control model!
 oShape.Control = oControlModel

 oForm = oDoc.createInstance("com.sun.star.form.component.Form")
 oForm.Name = "NumberForm"
 oPage.Forms.insertByIndex(0, oForm)

 REM Add the control model to the first form in the collection.
 oForm.insertByIndex(0, oControlModel)
 oPage.add(oShape)
End Sub

Regular forms, as created by Listing 28, group form components (described in Table 20) together. A DataForm,
however, can connect to a database and display the results of SQL queries. An HTMLForm, on the other hand, contains
controls specific to HTML pages.

Table 20. Control components that can be added to forms.

Component Description

CheckBox Check box control.

ComboBox Provides text input or selection from a list of text values.

CommandButton A clickable button.

CurrencyField An edit field with a currency value.

DatabaseCheckBox A data-aware check box that can be bound to a database field.

DatabaseComboBox A data-aware combo box that can be bound to a database field.

DatabaseCurrencyField A data-aware edit field with a currency value that can be bound to a database field.

DatabaseDateField A data-aware date field that can be bound to a database field.

DatabaseFormattedField A data-aware formatted field that can be bound to a database field.

DatabaseImageControl A field for displaying images stored in a database.

DatabaseListBox A data-aware list box that can be bound to a database field.

DatabaseNumericField A data-aware numeric field that can be bound to a database field.

DatabasePatternField A data-aware pattern field that can be bound to a database field.

DatabaseRadioButton A data-aware radio button that can be bound to a database field.

Chapter 15: Draw and Impress Documents 401

Component Description

DatabaseTextField A data-aware text field that can be bound to a database field.

DatabaseTimeField A data-aware time field that can be bound to a database field.

DateField An edit field with a date value.

FileControl An edit field for a file name.

FixedText Display text that cannot be edited by the user.

FormattedField An edit field that contains formatted text.

GridControl Display data in a table-like way.

GroupBox A control that can visually group controls.

HiddenControl A control that is hidden.

ImageButton A clickable button which is represented by an image.

ListBox A control with multiple values from which to choose.

NumericField An edit field with a numeric value.

PatternField An edit field with text that matches a pattern.

RadioButton A radio button.

TextField A text-edit field that supports single-line and multi-line data.

TimeField An edit field with a time value.

Presentations
The Presentation service contains properties (see Table 21) and methods that control a specific presentation. You can
create multiple presentation objects for different types of presentations. For example, you might have one presentation
that runs continuously at a trade show and one that requires manual intervention—for example, for a client sales visit.
The document’s getPresentation() method returns a new presentation object. After setting a presentation’s properties as
shown in Table 21, the methods start() and end() are used to start and stop a presentation. The method rehearseTimings()
starts a presentation while displaying a running clock to help you determine the running time of your presentation. See
Listing 29.

Table 21. Properties defined by the the com.sun.star.presentation.Presentation service.

Property Description

AllowAnimations If True, animations are enabled.

CustomShow Name of a customized show to use for this presentation; an empty value is allowed.

FirstPage Name of the first page in the presentation; an empty value is allowed.

IsAlwaysOnTop If True, the presentation window is always the top window.

IsAutomatic If True, page changes happen automatically.

IsEndless If True, the presentation repeats endlessly.

IsFullScreen If True, the presentation runs in full-screen mode.

IsLivePresentation If True, the presentation runs in live mode.

IsMouseVisible If True, the mouse is visible during the presentation.

Pause Long Integer duration that the black screen is displayed after the presentation is finished.

StartWithNavigator If True, the Navigator opens at the start of the presentation.

UsePen If True, a pen appears during the presentation so that you can draw on the screen.

Listing 29. SimplePresentation is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub SimplePresentation()
 Dim oPres
 oPres = ThisComponent.getPresentation()

402 OpenOffice.org Macros Explained

 oPres.UsePen = True
 REM This will start the presentation.
 REM Be ready to press the space bar to move through the slides.
 oPres.Start()
End Sub

A custom presentation can show the presentation’s pages in any order. Pages can be shown multiple times or not at
all. The getCustomPresentations() method returns a custom presentations object that contains all custom presentations
(see Table 22).

Table 22. Some methods supported by the XCustomPresentationSupplier interface.

Method Description

createInstance() Create a custom presentation.

getByName(String) Get a custom presentation by name.

getElementNames() Array of custom presentation names.

hasByName(String) Return True if the custom presentation with the specified name exists.

hasElements() Return True if the page contains at least one custom presentation.

insertByName(String, CustomPresentation) Insert a custom presentation by name.

removeByName(String) Remove the named custom presentation.

replaceByName(String, CustomPresentation) Replace a custom presentation by name.

A custom presentation (shown in Listing 30) is a container for draw pages that supports the XNamed and
XIndexedAccess interfaces. Create the custom presentation, add the draw pages in the order that you want them to
appear, and then save the custom presentation. A custom presentation is displayed in exactly the same way that regular
presentations are displayed, using a Presentation object, but the CustomShow attribute is set to reference the custom
presentation.

Listing 30. CustomPresentation is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub CustomPresentation()
 Dim oPres 'Presentations, both customer and regular
 Dim oPages 'Draw pages

 oPres = ThisComponent.getCustomPresentations().createInstance()
 If NOT ThisComponent.getCustomPresentations().hasByName("custom") Then
 oPages = ThisComponent.getDrawPages()

 REM Display pages 0, 2, 1, 0
 oPres.insertByIndex(0, oPages.getByIndex(0))
 oPres.insertByIndex(1, oPages.getByIndex(2))
 oPres.insertByIndex(2, oPages.getByIndex(1))
 oPres.insertByIndex(3, oPages.getByIndex(0))
 ThisComponent.getCustomPresentations().insertByName("custom", oPres)
 End If

 REM Now, run the customer presentation.
 oPres = ThisComponent.getPresentation()
 oPres.CustomShow = "custom"
 oPres.Start()
End Sub

Presentation draw pages
Draw pages in a presentation document are slightly different from those in a drawing document. The properties in Table
23 dictate how and when page transitions occur while showing presentations.

Table 23. Properties defined by the com.sun.star.presentation.DrawPage service.

Chapter 15: Draw and Impress Documents 403

Property Description

Change Long Integer that specifies what causes a page change.
• 0 – A mouse-click triggers the next animation or page change.

• 1 – The page change is automatic.

• 2 – Object effects run automatically, but the user must click on the page to change it.

Duration Long Integer time in seconds the page is shown if the Change property is set to 1.

Effect Effect used to fade in or out (see Table 24).

Layout Index of the presentation layout page if this is not zero.

Speed Speed of the fade-in effect using the com.sun.star.presentation.AnimationSpeed enumeration:
SLOW, MEDIUM, or FAST.

Page transitions are governed by the Effect property of the presentation draw page (see Table 24). The macro in
Listing 31 sets the transitions on all draw pages to RANDOM.

Table 24. Values defined by the com.sun.star.presentation.FadeEffect enumeration.

Values Values Values

NONE
DISSOLVE
RANDOM

VERTICAL_STRIPES
VERTICAL_CHECKERBOARD
VERTICAL_LINES

HORIZONTAL_STRIPES
HORIZONTAL_CHECKERBOARD
HORIZONTAL_LINES

FADE_FROM_LEFT
FADE_FROM_TOP
FADE_FROM_RIGHT
FADE_FROM_BOTTOM
FADE_FROM_UPPERLEFT
FADE_FROM_UPPERRIGHT
FADE_FROM_LOWERLEFT
FADE_FROM_LOWERRIGHT

MOVE_FROM_LEFT
MOVE_FROM_TOP
MOVE_FROM_RIGHT
MOVE_FROM_BOTTOM
MOVE_FROM_UPPERLEFT
MOVE_FROM_UPPERRIGHT
MOVE_FROM_LOWERRIGHT
MOVE_FROM_LOWERLEFT

UNCOVER_TO_LEFT
UNCOVER_TO_UPPERLEFT
UNCOVER_TO_TOP
UNCOVER_TO_UPPERRIGHT
UNCOVER_TO_RIGHT
UNCOVER_TO_LOWERRIGHT
UNCOVER_TO_BOTTOM
UNCOVER_TO_LOWERLEFT

FADE_TO_CENTER
FADE_FROM_CENTER
CLOCKWISE
COUNTERCLOCKWISE

ROLL_FROM_LEFT
ROLL_FROM_TOP
ROLL_FROM_RIGHT
ROLL_FROM_BOTTOM

CLOSE_VERTICAL
CLOSE_HORIZONTAL
OPEN_VERTICAL
OPEN_HORIZONTAL

STRETCH_FROM_LEFT
STRETCH_FROM_TOP
STRETCH_FROM_RIGHT
STRETCH_FROM_BOTTOM

WAVYLINE_FROM_LEFT
WAVYLINE_FROM_TOP
WAVYLINE_FROM_RIGHT
WAVYLINE_FROM_BOTTOM

SPIRALIN_LEFT
SPIRALIN_RIGHT
SPIRALOUT_LEFT
SPIRALOUT_RIGHT

Listing 31. SetTransitionEffects is found in the Graphic module in this chapter’s source code files as
SC15.sxi.

Sub SetTransitionEffects()
 Dim oPages 'Draw pages
 Dim i%

 oPages = ThisComponent.getDrawPages()
 For i = 0 To oPages.getCount() - 1
 With oPages.getByIndex(i)
 .Effect = com.sun.star.presentation.FadeEffect.RANDOM
 .Change = 1
 .Duration = 2
 .Speed = com.sun.star.presentation.AnimationSpeed.FAST
 End With
 Next
End Sub

Presentation shapes
Shapes contained in Impress documents differ from shapes in Draw documents in that they support the
com.sun.star.presentation.Shape service. The presentation Shape service provides properties that define special behavior
to enhance presentations (see Table 25).

404 OpenOffice.org Macros Explained

Table 25. Properties defined by the com.sun.star.presentation.Shape service.

Property Description

Bookmark Generic URL string used if the OnClick property requires a URL.

DimColor Color for dimming this shape if DimPrevious is True and DimHide is False.

DimHide If True and DimPrevious is True, the shape is hidden.

DimPrevious If True, the shape is dimmed after executing its animation effect.

Effect Animation effect for this shape (see Table 26).

IsEmptyPresentationObject True if this is the default presentation shape and it is empty.

IsPresentationObject True if this is a presentation object.

OnClick Specify an action if the user clicks the shape (see Table 27).

PlayFull If True, the sound of this shape is played in full.

PresentationOrder Long Integer representing the order in which the shapes are animated.

Sound URL string for a sound file that is played while the shape’s animation is running.

SoundOn If True, sound is played during the animation.

Speed Speed of the fade-in effect using the com.sun.star.presentation.AnimationSpeed
enumeration: SLOW, MEDIUM, or FAST.

TextEffect Animation effect for the text inside this shape (see Table 26).

Verb Long Integer “ole2” verb if the ClickAction is VERB.

The animation effects supported by shapes (see Table 26) are similar to, but more plentiful than, the animation
effects supported by draw pages (see Table 21).

Table 26. Values defined by the com.sun.star.presentation.AnimationEffect enumeration.

Property Property Property

NONE
RANDOM
PATH

DISSOLVE
APPEAR
HIDE

CLOCKWISE
COUNTERCLOCKWISE

MOVE_FROM_LEFT
MOVE_FROM_TOP
MOVE_FROM_RIGHT
MOVE_FROM_BOTTOM
MOVE_FROM_UPPERLEFT
MOVE_FROM_UPPERRIGHT
MOVE_FROM_LOWERRIGHT
MOVE_FROM_LOWERLEFT

MOVE_TO_LEFT
MOVE_TO_TOP
MOVE_TO_RIGHT
MOVE_TO_BOTTOM
MOVE_TO_UPPERLEFT
MOVE_TO_UPPERRIGHT
MOVE_TO_LOWERRIGHT
MOVE_TO_LOWERLEFT

MOVE_SHORT_TO_LEFT
MOVE_SHORT_TO_TOP
MOVE_SHORT_TO_RIGHT
MOVE_SHORT_TO_BOTTOM
MOVE_SHORT_TO_UPPERLEFT
MOVE_SHORT_TO_UPPERRIGHT
MOVE_SHORT_TO_LOWERRIGHT
MOVE_SHORT_TO_LOWERLEFT

MOVE_SHORT_FROM_LEFT
MOVE_SHORT_FROM_TOP
MOVE_SHORT_FROM_RIGHT
MOVE_SHORT_FROM_BOTTOM
MOVE_SHORT_FROM_UPPERLEFT
MOVE_SHORT_FROM_UPPERRIGHT
MOVE_SHORT_FROM_LOWERRIGHT
MOVE_SHORT_FROM_LOWERLEFT

LASER_FROM_LEFT
LASER_FROM_TOP
LASER_FROM_RIGHT
LASER_FROM_BOTTOM
LASER_FROM_UPPERLEFT
LASER_FROM_UPPERRIGHT
LASER_FROM_LOWERLEFT
LASER_FROM_LOWERRIGHT

STRETCH_FROM_LEFT
STRETCH_FROM_UPPERLEFT
STRETCH_FROM_TOP
STRETCH_FROM_UPPERRIGHT
STRETCH_FROM_RIGHT
STRETCH_FROM_LOWERRIGHT
STRETCH_FROM_BOTTOM
STRETCH_FROM_LOWERLEFT

ZOOM_IN_FROM_LEFT
ZOOM_IN_FROM_TOP
ZOOM_IN_FROM_RIGHT
ZOOM_IN_FROM_BOTTOM
ZOOM_IN_FROM_CENTER
ZOOM_IN_FROM_UPPERLEFT
ZOOM_IN_FROM_UPPERRIGHT
ZOOM_IN_FROM_LOWERRIGHT
ZOOM_IN_FROM_LOWERLEFT

ZOOM_OUT_FROM_LEFT
ZOOM_OUT_FROM_TOP
ZOOM_OUT_FROM_RIGHT
ZOOM_OUT_FROM_BOTTOM
ZOOM_OUT_FROM_CENTER
ZOOM_OUT_FROM_UPPERLEFT
ZOOM_OUT_FROM_UPPERRIGHT
ZOOM_OUT_FROM_LOWERRIGHT
ZOOM_OUT_FROM_LOWERLEFT

FADE_FROM_LEFT
FADE_FROM_TOP
FADE_FROM_RIGHT
FADE_FROM_BOTTOM
FADE_FROM_CENTER
FADE_FROM_UPPERLEFT
FADE_FROM_UPPERRIGHT
FADE_FROM_LOWERLEFT
FADE_FROM_LOWERRIGHT
FADE_TO_CENTER

Chapter 15: Draw and Impress Documents 405

Property Property Property

ZOOM_IN
ZOOM_IN_SMALL
ZOOM_IN_SPIRAL
ZOOM_OUT
ZOOM_OUT_SMALL
ZOOM_OUT_SPIRAL

VERTICAL_CHECKERBOARD
HORIZONTAL_CHECKERBOARD
HORIZONTAL_ROTATE
VERTICAL_ROTATE
HORIZONTAL_STRETCH
VERTICAL_STRETCH

VERTICAL_STRIPES
HORIZONTAL_STRIPES
VERTICAL_LINES
HORIZONTAL_LINES

WAVYLINE_FROM_LEFT
WAVYLINE_FROM_TOP
WAVYLINE_FROM_RIGHT
WAVYLINE_FROM_BOTTOM

SPIRALIN_LEFT
SPIRALIN_RIGHT
SPIRALOUT_LEFT
SPIRALOUT_RIGHT

CLOSE_VERTICAL
CLOSE_HORIZONTAL
OPEN_VERTICAL
OPEN_HORIZONTAL

Shapes contained in presentation documents support special actions (see Table 27) by setting the shape’s OnClick
property (see Table 25).

Table 27. Values defined by the com.sun.star.presentation.ClickAction enumeration.

Property Description

NONE No action is performed.

PREVPAGE Jump to the previous page.

NEXTPAGE Jump to the next page.

FIRSTPAGE Jump to the first page.

LASTPAGE Jump to the last page.

BOOKMARK Jump to a bookmark specified by the Bookmark property in Table 25.

DOCUMENT Jump to another document specified by the Bookmark property in Table 25.

INVISIBLE The object becomes invisible.

SOUND Play a sound specified by the Bookmark property in Table 25.

VERB An OLE verb is performed as specified by the Verb property in Table 25. An OLE object
supports actions called verbs. An OLE object that displays a video clip might support the
verb “play,” for example.

VANISH The object vanishes.

PROGRAM Execute another program specified by the Bookmark property in Table 25.

MACRO Execute a Star Basic macro specified by the Bookmark property in Table 25.

STOPPRESENTATION Stop the presentation.

Conclusion
Impress and Draw documents contain numerous features supporting drawing and graphics in documents. Both types of
documents have many drawing and graphical presentation features in common, and Impress documents facilitate the
construction of graphic presentations with support for manual or automatic page presentation. Although these documents
support the display of bitmapped images, their strength is vector drawings rather than photographic images. The results
possible with Impress and Draw documents range from simple to quite complex. Consider this chapter as only a starting
point for your explorations on the capabilities of these two document types.

Updates and corrections to this chapter can be found on Hentzenwerke’s Web site,
www.hentzenwerke.com. Click “Catalog” and navigate to the page for this book.

